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Abstract. The tropoelastin peptide CH;CO-Gly-Leu-
Gly-Gly-NHCHj3; has been modeled in aqueous solution
by means of force-field molecular dynamics simulations
and its motion characterized using nonlinear dynamics
theory. The trajectory R(?) of the representative system
point in configurational space has been considered.
Fractional Brownian motion with anomalous diffusion
is observed resulting from chaotic dynamics of molecules
on fractal media. The chaos of the peptide is a conse-
quence of nonlinear effects such as hydrodynamic inter-
actions of the chain due to the poor solvent role of water.
The viscous drag is pointed out and should be due to the
percolation network of hydrogen-bonded water mole-
cules. The method of reconstruction of the phase space
using the embedding theorem is applied to the trajectory
De(?) of the peptide end-to-end distance. The existence of
a low-dimensional chaotic attractor for dissipative sys-
tems has been demonstrated. The dynamical high-entro-
py state of the peptide in solution strengthens the
transition-to-chaos mechanism for the elastin elasticity.
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1 Introduction

What is the dynamics of peptide chains in dilute aqueous
solution? Of course, a simple answer is not possible: it
will depend upon the particular primary structure and
on the experimental conditions. Nevertheless, universal
scale behavior due to the nonlinear forces is expected [1].

We will deal with the peptide CH3;CO-Gly-Leu-Gly-
Gly-NHCH3;, with a typical sequence recurring in the
tropoelastin chain. The elastin glycine-rich sequences,
due to the conformational freedom and dipolar effects
of this amino acid and to its distribution and high
concentration in the protein (up to 33%), may charac-
terize the elastic performance of elastin [2].
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In a series of previous papers [3-7] we character-
ized the relative stability of conformers and the dy-
namical behavior of that sequence, either isolated or
in solution, starting from the available experimental
data [8].

Amazing nonlinear dynamical behavior with confor-
mational solitons has been evidenced for the in vacuo
molecule and chaotic behavior is suggested for the
molecule in aqueous solution. In the Villani—-D’Alessio—
Tamburro model, this has been related to the entropic
mechanism of the elastin elasticity as a chaos—soliton
transition from the relaxed to the stretched form in the
aqueous medium [5, 6].

The advent of nonlinear time series analysis and the
mathematical theorems associated with chaotic dynam-
ics are now making it possible not only to qualify but
also to quantify the behavior of complex systems. The
techniques, which consist of representing the dynamics
in multidimensional phase space using delay coordinate
embedding, have had success in predicting the chaotic
behavior [9].

In this work, by means of force-field molecular
dynamics (MD) simulations in aqueous solution
and original data analysis, we are interested in investi-
gating the complexity and instability of the nonlinear
dynamics of the solvated peptide in terms of the mean
squared displacement, the Hurst exponent, the fractal
dimension, the attractor dimensions and Lyapunov
exponents.

2 Model and methods

AMBER 4.1 software [10] was used and the data analysis was
performed using self-written FORTRAN programs.

The molecular potential energy was computed using the united-
atoms force field of Wiener et al. [11] for the peptide and the TIP3P
model of Jorgensen et al. [12] for the water molecules.

The MD simulation at constant temperature and pressure by
means of the method of Berendsen et al. [13] was accomplished by
coupling the system to external heat and pressure baths at reference
values T, = 300 K and P, = 1 atm. These dynamics are not
Hamiltonian and the molecular model can be reduced to an
ensemble of dissipative nonlinear Rayleigh oscillators [5, 14].
Periodic boundary conditions were applied and the cutoff distance
criterion for the nonbonded interactions was used.



The equations of motion were integrated in Cartesian coordi-
nates via the Verlet leap-frog algorithm [15] with holonomic con-
straints of the bond lengths at equilibrium values [16].

A solution box of density of about 1 g cm™ with one CH;CO-
Gly-Leu-Gly-Gly-NCH; molecule solvated by 852 water molecules
is the starting point of our simulation. This is the state obtained by
MD simulated annealing reported in previous work [7].

In our MD simulation the integration time step was 6t = 1 fs
and data were stored every At = (.08 ps. A time period of 1 ns was
simulated, producing time series of 12,500 points.

The analysis is focused on the dynamical properties of the
peptide. The trajectories R(#) of the representative system point in
the configurational 3N-dimensional space defined by the coordi-
nates of each atom and D..(¢) of the end-to-end distance are con-
sidered. In this way, leaving the traditional partition of the
molecular motion, the evolution of the whole system is analyzed.
The end-to-end distance, D, is defined by means of the end carbon
atoms of acetyl and N-methyl-amide groups.

2.1 Mean squared displacement and Hurst exponent

The mean squared displacement, (Rz(r)>, is defined as the time-
dependent difference correlation function [17, 18]

(R*(1)) := ([R(t0) — R(to + ) )t0

at correlation times which are later by an amount 7. The time
average denotes averaging over different time origins, 7.

The scaling law of the mean squared displacement of the
diffusing variable as a function of time is

(R*(0)) ~ 21

according to the law of diffusion, where H is the critical exponent of
Hurst [19-21]. We obtained the diffusion exponent, H, from the
slope of the corresponding bilogarithmic scale plot:

In (R*(1)) ~ 2HIn(1) .

When H = 0.5 ordinary Brownian motion occurs and the Einstein—
Fick law is followed, while if # # 0.5 fractionary Brownian motion
(fBm), a fingerprint of chaotic behavior, takes place [22, 23]. Both
cases of enhanced and reduced diffusion speed are possible. For a
random walk on a fractal object in the presence of fixed obstacles
the antipersistent fBm with H < 0.5 occurs. In fact, the irregulari-
ties existing at all length scales are responsible for the diffusion lag
[24].

2.2 Fractal dimension

How long is a dynamical path? Similarly to the Mandelbrot anal-
ysis of the coastline juggedness [25-27], the length of the trajectory
R(?) in its multidimensional space was computed (using Euclidean
metric) as a function of the resolution times P = nAt (n is an inte-
ger). The dimension, which is a measure of the intrinsic irregularity
of the trajectory, is obtained.

In this way the lengths, L(n), were measured and from the log—
log plot

In[L(n)] ~ d In(n)

the corresponding fractal dimension, D = 1 — d, was evaluated.

2.3 Reconstructing phase space

The work of Takens [28] has shown that if the dynamics are on a
d-dimensional Euclidean space, an embedding of the system can be
obtained with a 2d+ one-dimensional reconstructed state space
using delay coordinates. The basic idea of this reconstruction is that
if one has an orbit seen projected onto a single axis, s(¢), then the
orbit, by virtue of the projection, overlaps with itself. If we can
unfold the orbit by providing independent coordinates for a mul-
tidimensional space made out of the observations, then we can
undo the overlaps coming from the projection and recover orbits
which are not ambiguous.

Delay coordinates, {s(¢), s(t = T), s(t — 27T),...,s[t — (dg — 1)
T]}, are easy to work with and can be effective for very high dimen-
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sional cases. Most of the research on the state space reconstruction
problem has centered on the problems of choosing the time delay, T,
and the embedding dimension, dg, for delay coordinates.

2.4 Finding the time delay

The first step in phase-space reconstruction is to choose an opti-
mum lag parameter, 7. The most useful technique was suggested by
Fraser and Swinney [29]. They propose using the first minimum of
the average mutual information function, /(7), as a kind of non-
linear correlation function. At this time, the values of s(z) and
s(t — T) are independent enough of each other to be useful as
coordinates in a time delay vector.

2.5 Choosing the embedding dimension

The time delay reconstruction of the system phase space provides
the necessary number of coordinates to unfold the attractor called
the embedding dimension, dg [30].

We used the Cao method [31], which is based on the idea of
false nearest neighbors (FNN) developed by Kennel et al. [32].
In this case, the condition of no self-intersection states that if the
attractor is to be reconstructed successfully in R?, then all
the neighboring points in R? should also be neighbors in R4*!. This
d is chosen as the embedding dimension. This method also pro-
vides a way to distinguish between deterministic and stochastic
signals by plotting two functions E1 and E2 (see Cao [31] for the
precise definition). When both quantities reach the saturation
we find the embedding dimension. In case of noise, E1 will
never reach the saturation and E2 will always remain unity for any
dimension.

2.6 Determining the dynamical dimension

Once one has determined the global number of dimensions required
to unfold the attractor, there remains the problem of the number of
dynamical degrees of freedom, d, which are active in determining
the evolution of the system as it moves around the attractor [32]. To
calculate this dynamical dimension we used the method proposed
by Kennel et al. [33], which consists in evaluating the percentage of
local FNNs. Using the same idea as the method of FNNs, they
proposed a method to study the local structure of the phase space
to see if locally one requires fewer dimensions than dg to capture
the evolution of the orbits as they move on the attractor. Their
approach was to work in a dimension, d > dg, large enough to
assure that the attractor has been unfolded. In this space, they
studied for some data point y(k) = {s(¢), s(t = T), s(t = 27), ...,s
[t — (d — 1)T]} what subspace of dimension di, < dg allows accu-
rate local neighborhood-to-neighborhood maps of the data on the
attractor to be made. In fact, for a specified number of neighbors,
Ng, of y(k), they provided a local rule for calculating how these
points evolve in one time step into the same Np points near
y(k+1). When the percentage of bad predictions becomes inde-
pendent of di and is also insensitive to Np, it is possible to say that
the correct local dimension for the active degrees of freedom has
been identified.

2.7 Global Lyapunov Exponents

Given a dynamical system in a d-dimensional phase space it is
possible to monitor the evolution of an infinitesimal d-sphere of
initial conditions. This d-sphere will become a d-ellipsoid due to
the locally deforming nature of the flow. The jth one-dimensional
Lyapunov exponent, 4;, is then defined in terms of the length of the
ellipsoidal principal axes, p;(¢), at time 7 as [34]

4p = lim 1/tlogop;(1)/p;(0), j=1,...,dv
—0o0

The Lyapunov exponent monitors the behavior of two closely
neighboring points in a direction of the phase space as a function of
time. If the points expand away from each other, the Lyapunov
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exponent will be positive, if they converge, the exponent becomes
negative and if the two points stay the same distance apart, the
exponent stays near zero. If base 2 is used, the exponents are
measured in bits of information per time unit.

3 Results and discussion
3.1 Scaling law and fractal dimension

The bilogarithmic scale plot of the length L(n) of the
trajectory R(7) as a function of the resolution factor n
per measurement interval is reported in Fig. 1. The
asymptotic straight behavior has been fitted by the least-
squares regression line.

The computed critical exponent, increasing the
trajectory length, is d =0.71. As far as the fractal
dimension D = 1.71 is concerned we observe that it is
larger than that corresponding to ideal Brownian walks
(D=1.5) and that it is typical of antipersistent fBm
related to critical self-organized phenomena [35]. This
motion has a lower correlation time than a Brownian
one, with a greater entropy and is a fingerprint of chaotic
dynamics.

These observations confirm the previous hypotheses
[5, 6] of the great change in solution of the dynamical
picture with respect to the in vacuo molecule charac-
terized by soliton vibrations.

3.2 Mean squared displacement and Hurst exponent

The log-log plot of the time-dependent mean squared
displacement, (R?(z)), versus the correlation time, , is
reported in Fig. 2. In the meaningful time range, not
affected by the finite length of the series, the function has
a linear behavior and it is possible to evaluate the Hurst
exponent H = 0.30. The observed value is lower than
that corresponding to ideal Brownian walks (H = 0.5),
pointing to a reduced diffusion and consistent with the
value of the observed fractal dimension of R(7).
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Fig. 1. Log-log plot of the measured length, L(n), for the trajectory
R(?) as a function of the resolution factor, n, per observation period
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Fig. 2. Log-log plot of the mean squared displacement, (R%(7)),
versus the autocorrelation time, 7. The displacement is expressed in
angstroms and the time unit in 0.08 ps

The anomalous diffusion is in agreement with the
antipersistent fBm of molecules in fractal media. From
this point of view, we hypothesize that the diffusion lag
is due to the viscous drag of the solution hydrogen-
bonded network. In other words, the hydrogen-bonded
water molecules make a percolation cluster of obstacles
against the solute motion, and similarly to the findings
of simple lattice models deviation from ideal diffusion is
observed.

Let us remember that a great correspondence does
exist between the scaling laws of the chain size as a
function of the chain length, N, or the time period, «.
The former is characterized by the Flory critical expo-
nent [1], v, the later by the Hurst one. From this view-
point, these exponents can be interpreted in the same
way. Then, the observed H value is in agreement with
v= 1/3 expected in poor solvents [1], where the solute—
solvent interactions are unfavored with respect to the
intramolecular ones within the solute, because of the
poor hydrophilicity of the peptide.

In conclusion, the dynamics of the elastin tetrapep-
tide in aqueous solution could be modeled by means of
chaotic motion in fractal percolation media of hydrogen-
bonded water molecules.

3.3 Attractor dimensions and Lyapunov exponents

To analyze the chaos quantitatively the Lyapunov
exponents of the trajectory D.(f) for the peptide end-
to-end distance were considered.

The time series data of D..(f) were used to calculate
the /(T) function. The first minimum of the average
mutual information function occurs at 7 = 17A¢
(1.36 ps).

Using the time lag T = 16Atand 17A¢, the functions
El and E2 were calculated. As can be seen in Fig. 3, the
saturation is reached at dg ~ 11 after which it remains
approximately constant. This provides evidence that we
are dealing with a low-dimensional system.



For the D.(?) trajectory the percentage of bad pre-
dictions seen in Fig. 4 becomes independent of the
number of neighbours, Ng, and of the local dimension at
dp ~ 9, telling us that this attractor may be adequately
described by nine degrees of freedom. This means that
models for simulating the dynamic behavior of this
peptide should have local nine-dimensional dynamics
regardless of the dimensions of the overall space in
which the model is built.

These results shed light on the amazing chance
of performing simulations only along the few active
dynamical degrees of freedom. By reducing drastically
the dimension of the conformational phase space for

o . . . . . .
Dimension

Fig. 3. Values of El and E2 functions (see text) for the end-to-end
distance trajectory Dec(t)

Fig. 5. Average local Lyapunov
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dispersed molecules in solution, it would be possible to
perform long-time force-field simulations, characterizing
slow molecular motions, such as helix—coil transitions
and protein folding in biopolymers, or reptation in non
biological polymers, which are at present not possible to
investigate and are unlikely to be treatable for many
years [36]. In this framework Amadei and coworkers
[37-39] have developed the essential dynamics method.
This approximation is linear and therefore can be
improved. Nevertheless, the analysis outcome using
chaos techniques confirms it.

The nine computed local Lyapunov exponents
forwards and backwards in time are shown in Fig. 5. As
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Fig. 4. Percentage of local false nearest neighbors as a function of
the embedding dimension for the end-to-end trajectory Dee(?).
Ng= 40, 60, 80 and 100 neighbors are considered. From this view
di. ~ 9 might be chosen. Recall dg ~ 11
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Table 1. Lyapunov exponents, A, of Fig. 5 for D..(f), computed
forwards and backwards in time, are summarized. Also the total
sum is reported

Aj End-to-end distance x-Coordinate

Forward Backward Forward Backward
1 0.5244 0.5617 0.5268 0.5425
2 0.4376 0.4644 0.4356 0.4534
3 0.3556 0.3870 0.3487 0.3673
4 0.2519 0.2810 0.2564 0.2734
5 0.1425 0.1684 0.1378 0.1509
6 0.0082 0.0402 —0.0057 0.0141
7 -0.1734 -0.1656 —-0.2039 -0.1762
8 —0.4646 —0.4669 —0.4887 —0.4426
9 —1.1203 -1.1277 —1.1059 —1.1359
Sum —-0.0380 0.1426 —0.0988 0.0470

can be seen, five Lyapunov exponents are positive, one is
close to zero and the others are negative. The results are
summarized in Table 1, which also gives a negative total
sum of the Lyapunov exponents, as expected for a dis-
sipative system. As can be seen, the computation of the
Lyapunov exponents forwards and backwards in time
gives approximately the same results, which tell us that
the dynamical dimension has been correctly calculated.

The existence of positive Lyapunov exponents dem-
onstrates further and strictly the chaos of peptide
dynamics. The chaotic behavior of the tetrapeptide in
solution, already hypothesized by one of us [5, 6], plays a
fundamental role in the expression of the restoring force
in the entropic mechanism of elastin elasticity. Our
findings are in agreement with the experimental evidence
of Gaspard et al. [40] for microscopic chaos in fluid
systems obtained by the observation of Brownian
motion of a colloidal particle suspended in water.
Moreover, they are in the framework of the chaotic
hypotheses of Krylov [41] (who referred to microscopic
dynamical instabilities) and Gallavotti and Cohen [42],
which suppose that the properties of statistical
mechanics can be predicted by treating the systems as
chaotic.

4 Conclusions

The configurational trajectory R(¢) of the elastin peptide
in aqueous solution was analyzed and its fractal
dimension (D=1.71) and the anomalous diffusion of
its motion (H=0.30) were determined. The observed
behavior departs from the ideal Brownian motion
because of the nonlinear interactions in solution, such
as hydrodynamic interactions [43] (i.e. the fluctuating
force on any chain unit turns out to be correlated with
the force on other distant ones) and the hydrogen-
bonded network. It is close to the random walks of
chains in poor solvents characterized by the Flory
exponent v= 1/3. The observed anomalous diffusion is
coherent with the fractional Brownian motion in fractal
media: the diffusion lag could be due to the percolation
cluster of the solution hydrogen-bonded network.

The trajectory D..(t) of the end-to-end distance was
analyzed using delay coordinate embedding in an effort
to understand the nonlinear dynamic behavior of the
system. The analysis using the standard time delay
embedding techniques seems to indicate low-dimen-
sional chaotic dynamics (dg =11, d. =9 and five positive
Lyapunov exponents). Even though the original system
has a large number of degrees of freedom, the results
seem to indicate that only a few degrees of freedom are
active in the final attractor and that the dynamics of
such a system could be described by a reduced number
of differential equations.

The existence of a low-dimensional chaotic attractor
with few dynamical degrees of freedom active in
determining the evolution of the system is typical of
nonlinear dissipative systems [44], to which molecules in
solutions belong, and is consistent with the Langevin
dynamics description [45]. Similar results have been
obtained by one us concerning the folding of a small
protein simulated as a Langevin system [46] or by Zhou
and Wang on a polyalanine peptide [47].

Chaos is a sufficient but not necessary condition for
Brownian motions [48]. In fact, the analysis of simplified
models showed that the erratic motion of dispersed
particles can be due largely to the randomness of the
initial conditions of the fluid molecules [49]. Chaos is
defined mathematically in terms of positive Lyapunov
exponents. In this way we showed that the conforma-
tional motion of the elastin peptide in aqueous solution
has chaotic dynamics after all.

The collective dynamics of the oligopeptide of the
tropoelastin chain floating in dilute solution is inherently
nonlinear and chaotic behavior is observed. In elastin
further nonlinear effects fundamental to the peculiar
macroscopic properties of the protein have to be taken
into account. The most important is certainly that due to
desmosine and isodesmosine cross-links recurring up to
about 30 amino acids [50], which reticulate tropoelastin
chains forming the elastin elastic percolation network
[51, 52].

We suggest that the physical behavior of elastin is
a consequence of its nonlinear effects developed at
the protein—water interface, where glycine-rich chain
portions, similar to the sequence of our peptide, are
likely to be located and chaotic dynamics are expected.
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